Ремонт блока питания мобильного своими руками пошагово. Ремонт блоков питания. Собираем импульсный БП своими руками

Проблемы и дефекты блоков питания могут быть абсолютно разные - от полной не работоспособности до постоянных или временных сбоев. Как только вы приступите к ремонту блока питания убедитесь, что все контакты и радиоэлементы визуально в порядке, силовые шнуры не повреждены, предохранитель и выключатель исправен, коротких замыканий на землю нет. Конечно, блоки питания современной аппаратуры хоть и имеют общие принципы работы, но схемотехнически отличаются достаточно сильно. Постарайтесь найти схему на блок питания, это существенно упростит и ускорит ремонт, помните, что многие схемы блоков питания с перечнем типовых неисправностей, можно найти в сервисном руководстве от данной аппаратуры.

Приступая к ремонту вы обязательно должны уметь пользоваться мультиметром, а желательно и осциллографом, ну и, конечно же иметь оловом и канифолью.

Проблемный блок питания становится причиной нестабильной работы устройства, проявляя себя то периодическими ошибками в работе, то спонтанными глюками, а то и выходом того или иного узла в аппаратуре.

При первых признаках нестабильной работы блока питания, необходимо как можно скорее приступить к ремонту и диагностики блока питания. А первым действием, которое вы должны совершить сразу же после вскрытия корпуса устройства, это пропылесосить блок питания, а потом тщательно осмотреть все радиокомпоненты и места их соединений.

Внимательно осмотрите все электролитические конденсаторы, нет ли среди них вздутых. А лучше всего будет, если вы проверите каждый из них. Даже если конденсатор выглядит отлично, это не значит, что он не потерял емкость или у него резко не увеличилось ESR. Имеются небольшие приставки к мультиметрам да и готовые которые помогут даже не выпаивая его из схемы. При желании вы и сами можете собрать такой прибор.

Другая проблема, которая может возникнуть и требовать ремонта блока питания, это нестабильной работы и пульсации питающего напряжения, вызванные плохой фильтрацией. Их легко увидеть на экране осциллографа. На маленькие пульсации можно и не обращать внимание, а при сильных шумах потребуется ремонт. Но вопрос пульсаций остро стоит только в импульсных блоках питания применяемых в телевизорах, мониторах, компьютерах и совсем не актуален для каких-нибудь простых устройств.

Рассмотрим различные виды блоков питания и возникающие в них проблемы более подробно.

Импульсные блоки питания самый ненадежный элемент в современных бытовых приборах и устройствах. Это и логично –большие токи, высокие напряжения – ведь через импульсный БП проходит вся мощность, которую потребляет схема. При этом учитывайте, что мощность, отдаваемая блоком питания в нагрузку, может изменяться в процессе работы десятки раз, что само по себе не очень хорошо.

Большинство фирм используют простые схемы импульсных блоков питания. Оно и понятно во первых это дешевле, а во вторых имеется высокая вероятность, что ваше устройство через несколько лет эксплуатации выйдет из строя.

При ремонте импульсного блока питания желательно иметь схему. Ну, а если ее нет, простые телевизоры можно ремонтировать и без нее. Принцип работы всех импульсников практически одинаков, отличие только в схемных решениях и типах применяемых деталей. Огромную , мониторам и устройствам видеотехники вы можете скачать и у нас.

Приступаем к ремонту блока питания на примере ИБП из телевизора .

Включаете телевизор, убеждаетесь, что он не включается, что светодиод дежурного режима не светится. Если он горит, то проблема, скорее всего, не в БП
Выключаете телевизор, осуществляете его разборку
Визуальный осмотр платы, особенно места, где находится импульсный БП
Внимательно осмотрите места пайки, особенно у трансформатора
Прозвоните шнур питания, предохранитель, выключатель питания, дроссели и выпрямительный мост. Затем , диоды и стабилитроны и по возможности микросхемы. Сначала проверку осуществляйте без выпаивания радиокомпонента из схемы, выпаивайте только когда его подозреваете.
Часто при поломке импульсного БП предохранитель не успевает сгореть. В случае сгоревшего ключевого транзистора, проверьте и балластное сопротивление. Предохранитель из-за , который используется в кинескопных телевизорах для управления размагничивающим устройством. Обязательно прозвоните мультиметром на короткое замыкание выводы конденсатора фильтра сетевого питания, но только не выпаивайте его из схемы, так как можно одним измерением проверить так же на пробой ключевой транзистор или микросхему с встроенным силовым ключом.
Часто обрываются балластные сопротивления. Т.к они имеют очень маленькое сопротивление (десятые доли Ома, единицы Ом) и используются для ограничения импульсных токов, а также для защиты
Надо посмотреть, нет ли замыканий во вторичных цепях питания – для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей

Выполнив все эти пункты и заменив дефектные детали, можно осуществить проверку под напряжением. Но прежде замес-то сетевого предохранителя установите лампочку 150-200 Ватт (или последовательно соединенные лампочки). Нагрузка защитит ваш импульсный БП, если проблема полностью не устранена.

Возможны три варианта:

Лампочка ярко загорается, а затем тухнет, появляется растр. Или загорается светодиод дежурного режима. Необходимо замерить напряжение сточной развертки. Если оно завышено проверьте электролитические конденсаторы, но только заменой на точно исправный. Также могут не работать оптопары (если они присутствуют в схеме), или ее цепи управления. можно прочитать здесь.
Если лампочка ярко вспыхнула и погасла. Растр, индикация отсутствуют. Это означает, что импульсный БП не запускается. Необходимо замерить напряжение на конденсаторе сетевого фильтра и убедится, что он около 280-300 Вольт. Если его нет еще раз прозвоните цепи питания и выпрямитель. Если оно ниже – проверьте диодный мост или произошла потеря емкости конденсатор фильтра. Если напряжение соответствует 280-300 вольтам, проверьте выпрямители вторичных источников питания, а также цепи их запуска.
Лампочка горит очень яркость. Немедленно отключите телевизор. Заново все проверьте

Обычно возникающие дефекты в импульсных блоках питания попадают в данный алгоритм поиска неисправностей, но иногда встречаются более сложные проблемы. Для таких случаев методики не существует, просто включите ваши мозги.

Давайте прикинем возможные варианты того, из-за чего блок питания может сгореть и какие при этом могут быть проблемы для всей остальной электронике системного блока? Очень часто блоки горят при скачках напряжения в таком случае в первую очередь нужно прозвонить входные цепи инвертор или фильтр иногда поврежденные элементы можно распознать и просто при визуальном осмотре.



Если блок питания ATX в персональном компьютере не подает признаков работоспособности: вентиляторы не крутятся, материнская плата не запускается отключите и вытащите его из системного блока для ремонта.

Итак, перед тем как приступить к ремонту блока питания, нужно точно понять, что компьютер не работает только из-за него. Только после этого можно приступать к извлечению блока питания из корпуса. Для тех кто это делает первый раз, рекомендую перед отсоединением шлейфов от материнской платы сфотографировать их подключение.

Для того чтобы можно было включить компьютерный блок питания в целях ремонта необходимо подключить к нему нагрузку в соответствии со схемой:

В случае отсутствия следов гари и других заметных неисправностей. Начинаем ремонт с проверки плавкого предохранителя . Если он перегорел подсоедините к нему лампу накаливания от 100 Ватт, как и в случае ремонт импульсного БП телевизора. Если имеется короткое замыкания она ярко вспыхнет, и тем самым будет сигнализировать нам о пробое диодного моста или конденсаторов.

Теперь нужно проверить все выходные напряжения БП.

Для проверки цепей +/-5 В и +/-12 В, измерьте их сопротивление при выключенном блоке питания (+5 В красный провод, а +12 - желтый, черный провода - это масса). Если сопротивление меньше 100 Ом - скорее всего, произошел пробой диодов в выпрямительном мосту. Пробой выпрямительных диодов чаще всего проявляется негромким жужжанием. Аналогичным проверьте и линии -5 B/-12 В.

Сложнее убедиться в работоспособности ШИМ-контроллера на микросхеме TL493 , TL494, TL495. Их данные и распиновка имеются в . Начните с измерения напряжения питания микросхемы. Если это напряжение отсутствует, проверьте внешние цепи и при условии, что они в порядке, замените микросхему.

Мультиметром измерьте опорное напряжение на микросхеме, оно должно быть +5 В. Если напряжение не соответствует, проверьте резисторные делители, подключенные в эту цепь.

На выводе 5 TL493, TL494, TL495 должны быть пилообразные пульсации напряжения с амплитудой около 3 В и частотой от 1 до 50 кГц, которые можно посмотреть с помощью осциллографа. Если их нет проверьте конденсатор у 5 ножки, и резистору 6. Если они исправны, поменяйте микросхему.

Остается проверить сигналы на выходе ШИМ-контроллера. Если наблюдаются импульсы с четкими фронтами и амплитудой порядка 2-3 В, микросхема исправна. Иначе пробиты транзисторы в цепи высоковольтного ключа.

Также не лишним будет проверить и обмотки трансформаторов.

Бывает еще и такой типовой дефект : компьютерный блок питания самопроизвольно включается. Вентиляторы крутятся, а компьютер не включается. Причиной дефекта, в большинстве случаев, является поломка стабилизатора дежурного напряжения блока питания, который формирует дежурное напряжение +5V. Не видя его при старте, система просто не способна пройти начальный этап самотестирования.

Если вам влом, собирать схему нагрузки, то можно просто замкнуть контакты PS-ON и COM. На рисунке ниже показаны две версии расположения контактов на шлейфе компьютерного блока питания.


Но прежде чем замкнуть между собой контакты PS-ON и COM, нужно проверить наличии «дежурного» напряжения +5В на контакте «+5VSB», обычно он бывает фиолетового цвета. Для этого нужно включить БП в сеть 220 вольт, взять мультиметр, переключить его в режим «вольтметра», затем минусовой щуп подсоединить к одному из контактов COM, а плюсовой к +5VSB. Мультиметр должен показать наличие +5В. Если же напряжение отсутствует, то необходимо разобрать БП и проверить цепь по этому питанию.

Если «дежурное» напряжение есть, то можно смело перемкнуть контакты PS-ON и COM, и подав питание 220В приступить к проверке остальных имеющихся напряжений.

Если будет выявлено отсутствие одного или нескольких из них, то можно приступить к разборке питающего источника.

После разборки в первую очередь очистите БП от пыли. После очистки визуально осмотрите плату, особенно конденсаторы, они очень любят там вздуваться. Выглядит это вот так:


Обнаружив такие конденсаторы с вздувшимися верхушками, смело меняйте их. Данная неисправность, является самой распространённой, а ликвидировать такую мелкую неприятность может почти каждый, кто умеет держать паяльник руками, а не их отростками из одного места. Главное не забудьте, что все электролитические конденсаторы обладают полярностью, поэтому не путайте их вывода.

Ремонт блоков питания - Zalman ZM500-GS с неисправностью не включается .

Подключив БП к сети и проверив его тестером для компьютерных БП убедился в его полной неработоспособности. Сетевой предохранитель оказался сгоревшим. Подключив вместо него лампу накаливания на 100 ватт. В рабочем состоянии под нагрузкой, она должна загореться (в момент зарядки сетевых емкостей), а потом немного притухнуть. В дежурном режиме, когда потребление блока питания низкое, лампа может светится непродолжительное время, после чего тухнет. Такое поведение должно циклично повторятся.

Включив питание, лампа ярко загорелась, говоря о коротком замыкании или о большом токе потребления в первичных цепях. Подключив тестер убедился в наличии всех выходных напряжений на разъеме АТХ. Это уже гуд, содрав термоизоляцию с радиоэлемента похожего на конденсатор увидел под ней подгоревший . Заменив его на новый БП стал работать правильно.

Подарили мне китайский трансформаторный блок питания, модель HKA-12100EC-230, а он оказался не рабочим. Если верить обозначению на нем выдает ток до 1 А. Как раз мне такой и нужен, поэтому решил разобрать и попытаться отремонтировать этого китайца.

Обучающий фильм на русском языке, раскрывающий технологию ремонта компьютерного блока питания ATX

Если вы ремонтировали ИБП, то вы наверняка сталкивались с такой ситуацией: все неисправные элементы заменены, оставшиеся вроде бы проверены, а включаете телевизор и… бац… и все надо начинать сначала! В радиотехнике чудес не бывает и, если что-то не работает, то на это есть причина! Наша задача – найти ее!

ИБП – самый ненадежный узел в современных радиоустройствах. Оно и понятно – огромные токи, большие напряжения – ведь через ИБП проходит вся мощность, потребляемая устройством. При этом не будем забывать, что величина мощности, отдаваемая ИБП в нагрузку, может изменяться в десятки раз, что не может благотворно влиять на его работу.

Большинство производителей применяют простые схемы ИБП. Оно и понятно. Наличие нескольких уровней защиты способно часто лишь усложнить ремонт и практически не влияют на надежность, так как повышение надежности за счет дополнительной петли защиты компенсируется ненадежностью дополнительных элементов, а нам при ремонте приходится долго разбираться, что это за детали и зачем они нужны. Конечно, каждый ИБП имеет свои характеристики, отличающиеся мощностью, отдаваемой в нагрузку, стабильностью выходных напряжений, диапазоном рабочих сетевых напряжений и другими характеристиками, которые при ремонте играют роль, только когда нужно выбрать замену отсутствующей детали.

Понятно, что при ремонте желательно иметь схему. Ну, а если ее нет, простые телевизоры можно ремонтировать и без нее. Принцип работы всех ИБП практически одинаков, отличие только в схемных решениях и типах применяемых деталей.

Я пользуюсь методикой, выработанной многолетним опытом ремонта. Вернее, это не методика, а набор обязательных действий при ремонте, проверенных практикой.

Предложенная методика предполагает, что вы хоть немного знакомы с работой телевизора. Для ремонта необходим тестер (авометр) и, желательно, но необязательно, осциллограф.
Итак, ремонтируем блок питания.

Вам принесли телевизор или испортился свой.

* Включаете телевизор, убеждаетесь, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в ИБП. На всякий случай надо будет проверить напряжение питания строчной развертки.

* Выключаете телевизор, разбираете его.

* Внешний осмотр платы телевизора, особенно участка, где размещен ИБП. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и др. Надо будет в дальнейшем проверить их.

* Внимательно просмотрите пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.

* Проверьте цепь питания: прозвоните шнур питания, предохранитель, выключатель питания – если он есть, дроссели в цепи питания, выпрямительный мост. Часто при неисправном ИБП предхранитель не сгорает – просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.

* Недолго проверить остальные детали блока – диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.

* Надо посмотреть, нет ли замыканий во вторичных цепях питания – для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.

Выполнив все проверки и заменив неисправные детали, можно выполнить проверку под током. Для этого вместо сетевого предохранителя подключаем лампочку 150-200 Ватт 220 Вольт. Это нужно для того, чтоб лампочка защитила ИБП в случае, если неисправность не устранена. Отключите размагничивающее устройство.

Включаем.Возможны три варианта:

1. Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее сточную развертку – для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150-160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим, в некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть), или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.

2. Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что ИБП не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280-300 Вольт. Если его нет – иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено – может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.

3. Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните – чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.

На 95% неисправности укладываются в данную схему, однако встречаются более сложные неисправности, когда приходится поломать голову. Для таких случаев методики не напишешь и инструкцию не создашь.

Всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

Работа блоков на 12 вольт

Импульсный включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.

При диагностике телевизионных устройств на отыскание неисправного компонента тратится несоизмеримо больше времени, чем на его замену, особенно, если поиск дефекта осуществляется своими силами, а не профессиональным телемастером. Безусловно, логичнее поручить ремонт специалисту, имеющему опыт и большую практику такого рода работ, но если есть желание, навыки обращения с паяльником и тестером, необходимая техническая документация в виде принципиальной электрической схемы, можно попытаться починить телевизор на дому самостоятельно.

Блок питания современного телевизора, будь то плазменная панель или ЖК, LED тв, представляет собой импульсный источник питания с заданным диапазоном выходных питающих напряжений и номинальной мощностью, отдаваемой в нагрузку по каждому из них. Плата питания может быть выполнена в виде отдельного блока, это характерно для приемников небольших диагоналей, или интегрирована в телевизионное шасси и располагаться внутри устройства.

Характерными признаками неисправности этого блока являются следующие:

  • Телевизор не включается при нажатии на кнопку сетевого выключателя
  • Светодиод дежурного режима горит, но нет перехода в рабочий режим
  • Помехи на изображении в виде изломов и полос, фон по звуку
  • Есть звук, но нет изображения, которое может появиться спустя некоторое время
  • Требуется несколько попыток включения для появления нормальной картинки и звука

Разберем схемотехнику стандартного блока питания и его типовые неисправности на примере телевизора ViewSonic N3260W.

Для полноценного просмотра схемы ее можно открыть в новом окне и увеличить, либо загрузить себе на компьютер или мобильное устройство

Первое, с чего следует начать, это тщательный визуальный осмотр платы на выключенном из сети аппарате. Для этого блок необходимо демонтировать из телевизора, отсоединив разъемы, и обязательно разрядить высоковольтный конденсатор в фильтре - C1. В блоках этой серии телевизоров довольно часто выходят из строя электролитические конденсаторы фильтров вторичных источников питания. Они легко диагностируются по вздутой верхней крышке. Все конденсаторы, внешний вид которых вызывает сомнение, необходимо сразу заменить.

Узел дежурного режима выполнен на IC2 (TEA1532A) и Q4 (04N70BF) с элементами стабилизации выходного напряжения 5V на оптроне IC7 и управляемом стабилитроне ICS3 EA1. Отсутствующее или заниженное напряжение на выходе этого узла, измеренное на конденсаторах CS22, CS28, свидетельствует о его неправильной работе. Опыт восстановления этого участка схемы свидетельствует, что более всего уязвимы элементы IC2, Q7, ZD4 и Q11, R64, R65, R67, которые требуют проверки и замены в случае необходимости. Работоспособность деталей проверяется тестером непосредственно на плате блока. При этом сомнительные комплектующие выпаиваются и тестируются отдельно, для исключения влияния на их показатели соседних элементов схемы. Микросхема IC2 просто подлежит замене.

При наличии на выходе схемы дежурного режима напряжения 5V на лицевой панели телевизора загорается красный светодиод. По команде с пульта или кнопки на лицевой панели телевизора блок питания должен перейти в рабочий режим. Эта команда - Power_ON - в виде высокого потенциала около 5V приходит на 1 вывод разъема CNS1, открывая ключи на QS4 и Q11. При этом на микросхемы IC3 и IC1 подаются питающие напряжения, переводя их в рабочий режим. На 8 вывод IC3 непосредственно с коллектора Q11, на 12 вывод IC1 через ключ Q9 после запуска схемы PFC. Работоспособность схемы коррекция коэффициента мощности (Power Factor Correction) косвенно определяется увеличением напряжения с 310 до 390 вольт, измеренным на конденсаторе C1. Если появились выходные питающие напряжения 12V и 24V, то и основной источник на IC3, Q1, Q2 функционирует в нормальном режиме. Практика показывает низкую надежность UCC28051 и LD6598D в критических условиях, когда ухудшается фильтрация вторичных источников, а их замена носит рядовой характер.

Обобщая опыт ремонта телевизионных блоков питания следует отметить, что самым слабым звеном в их составе являются конденсаторы фильтров, теряющие со временем свои свойства и номинальные параметры. Иногда неисправная "емкость" видна по вздутой крышке, иногда нет. Последствия плохой фильтрации выпрямленного напряжения могут быть самыми разными: от потери работоспособности самого источника питания, до повреждения элементов инвертора или сбоя программного обеспечения у микросхем памяти на материнской плате.

Самостоятельно разобраться во всех причинах и следствиях при ремонте блока питания современного телевизора, правильно его диагностировать без специальных инструментов и приборов весьма затруднительно. Наш совет в таких случаях -

В любой электронной системе, работающей от импульсного блока питания, наступает неприятный момент, когда приходится сталкиваться с проблемным выходом его из строя. К сожалению, импульсные радиоэлементы или блоки, как показывает практика, не столь долговечны, как того хотелось бы, поэтому требуют к себе более пристального внимания, а зачастую просто замены или ремонта.

В последнее время многие производители импульсных блоков питания решают вопрос ремонта или замены своего «детища» кардинально. Они просто делают монолитные импульсные блоки, не оставляя практически никаких вариантов начинающим радиолюбителям для их ремонта. Но если вы стали обладателем разборного импульсного блока питания , то в умелых руках и владея определёнными знаниями и элементарными навыками замены радиоэлементов, вы легко сможете самостоятельно продлить срок его службы.

Общие принципы работы импульсных блоков питания

Давайте сначала разберёмся с общим принципом работы любого импульсного блока питания. Тем более что основные рабочие функции и даже выходные напряжения для определённых моделей, которые необходимы для функционирования всей системы (будь то телевизор или другой вариант электронного устройства) у всех импульсников практически одинаковы. Различаются только индивидуальные схематические рисунки и соответственно применяемые радиоэлементы и их параметры. Но это уже не столь важно для понимания общего принципа его работы.

Для простых любителей или «чайников»: общий принцип работы импульсных блоков питания заключается в трансформации переменного напряжения , которое подаётся непосредственно из розетки 220 В в постоянные выходные напряжения для запуска и работы всех остальных блоков системы. Осуществляется такая трансформация с помощью соответствующих импульсных радиоэлементов. Основными из них являются импульсный трансформатор и транзистор, которые обеспечивают рабочее функционирование всех электропотоков. Для проведения ремонта нужно знать как запускается этот блок. А для начала проверить наличие входного рабочего напряжения, предохранитель, диодный мост и так далее.

Рабочий инструмент для проверки импульсных блоков питания

Для ремонта импульсного блока питания, вам потребуется обычный, даже простенький мультиметр , который проверит постоянное и переменное напряжение. С помощью функций омметра, прозвонив сопротивления радиодеталей, вы также можете быстро проверить исправность предохранителей, дросселей, рабочее сопротивление резисторов, «бочонки» электролитических конденсаторов. А также транзисторные диодные переходы или диодные мосты и прочие виды радиоэлементов и их связи в любой электронной схеме (иногда даже не выпаивая их полностью).

Проверять импульсный блок сначала нужно в «холодном» режиме. В этом случае прозваниваются все визуально подозрительные (вздувшиеся или горелые радиодетали), которые поддаются «холодной» проверке без подачи рабочего напряжения. Визуально испорченные радиодетали следует немедленно заменить на новые. Если облезла маркировка воспользуйтесь принципиальной схемой или найдите соответствующий вариант в интернете.

Замену производить нужно только с разрешающим допуском по определённым параметрам , который вы можете найти для любого радиоэлемента в специализированной литературе или в прилагающейся к прибору схеме. Это безопасный метод, потому что импульсные блоки питания очень коварны своими электрическими разрядами.

Не забывайте и то, что при обнаружении нерабочего радиоэлемента , нужно проверить соседние с ним детали. Зачастую резкие перепады напряжения при сгорании одного элемента, влекут за собой выход из строя соседних. В процессе практической деятельности по ремонту определённых моделей вы будете логически вычислять неисправность исходя из результата состояния ремонтируемого объекта. К примеру, даже по определённому запаху (запах тухлых яиц при выходе из строя электролита), при включении по монотонному звуку или треску в процессе работы блока и прочих дефектах, которые могут возникнуть в процессе работы любого электронного прибора.

В рабочем режиме проверка импульсного блока питания возможна только при нагрузке всей системы – не вздумайте отключить нагрузочные шины телевизора при проверке. Можно создать нагрузку искусственным путём с помощью подключения специально собранного нагрузочного эквивалента.

Основные неисправности и методы проверки импульсных блоков питания

Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник. Перед началом проверки убедитесь в работоспособности сетевого кабеля или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы. Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.

Возможные причины выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:

  1. При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
  2. Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
  3. Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.

Самостоятельная и качественная пайка

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Основные этапы ремонта импульсных блоков питания

Возможные неисправности типовых импульсных блоков питания на примере телевизора или компьютера:

Неисправности импульсных блоков питания на 12 вольт

Сложность замены любого импульсного блока питания на 12 В заключается в поиске нужной модели, а они очень многообразны. Поэтому найти такой блок с нужным выходным напряжением и силой тока не всегда представляется возможным, если он быстро понадобился. Иногда проще, при незначительной поломке, восстановить его работоспособность самому. Вот некоторые советы для этого:

Надеемся, эта статья дала общее представление об устройстве импульсных блоков питания. А, возможно, даже и заинтересовала многих начинающих радиолюбителей, которые хотят повысить свои профессиональные навыки.

 
Статьи по теме:
Как открыть бутылку “ножом сомелье” Современный штопор
Нарзанник - это обязательное приспособление для качественной работы сомелье, если речь о ресторане. В баре нарзанник превращается в необходимый барный инвентарь, без которого сложно открыть бутылку с напитком. На самом деле нарзанник в повседневной жизни
Рыба пикша как готовить. Рецепт запекания пикши. Пикша в мультиварке
Рыба пикша довольно часто встречается на прилавках наших магазинов. Эта обитательница солёных водоемов обладает уникальными вкусовыми и полезными качествами. Благодаря разнообразию рецептов ее приготовления, такую рыбу можно употреблять ежедневно и тем са
Маринуем мясо для шашлыка
Вариантов приготовления маринада для свиного шашлыка просто огромное количество. И в каждом есть свои недостатки и достоинства. Например, шашлык из свинины, приготовленный в маринаде на уксусе — простой и всем известный способ. Тем не менее, он считается
Весы и Скорпион – совместимость мужчины и женщины
Наталья Ерофеевская Весьма таинственный и загадочный, эмоциональный и чувственный Скорпион. Слабые и нерешительные, часто ошибающиеся даже в серьезных жизненных вопросах Весы. Что между ними может быть общего? Между живущим настоящим, весьма самонаде