Получить древесный газ. Автомобиль на дровах: как он работает? Мифы о газогенераторных установках

Оговоримся сразу: если автомобиль ездит на дровах, это не значит, что он - паровоз без рельсов. Низкий КПД паровой машины с ее отдельной топкой, котлом и цилиндрами двойного-тройного расширения оставил паровые автомобили в числе забытой экзотики. А сегодня мы поговорим о «дровяном» транспорте с привычными нам ДВС, моторами, сжигающими топливо внутри себя.

Разумеется, затолкать дрова (или нечто подобное) в карбюратор вместо бензина пока еще никому не удавалось, а вот идея прямо на борту авто получать из древесины горючий газ и подавать его в цилиндры как топливо прижилась на долгие годы. Речь идет о газогенераторных автомобилях, машинах, чей классический ДВС работает на генераторном газе, который получают из древесины, органических брикетов, или угля. От привычного жидкого топлива, кстати, такие машины тоже не отказываются - они способны работать и на бензине.

Святая простота

Генераторный газ - это смесь газов, состоящая в основном из окиси углерода СО и водорода Н2. Получить такой газ можно, сжигая размещенную толстым слоем древесину в условиях ограниченного количества воздуха. На этом несложном принципе работает и автомобильный газогенератор, простой по сути агрегат, но громоздкий и конструктивно осложненный дополнительными системами.

Также, помимо собственно производства генераторного газа, автомобильная газогенераторная установка охлаждает его, очищает и смешивает с воздухом. Соответственно, конструктивно классическая установка включает в себя сам газогенератор, фильтры грубой и тонкой очистки, охладители, электровентилятор для ускорения процесса розжига и трубопроводы.

НПЗ вожу с собой

Простейший газогенератор имеет вид вертикального цилиндра, в который почти доверху загружается топливо - дрова, уголь, торф, прессованные пеллеты и т.п. Зона горения расположена внизу, именно здесь, в нижнем слое горящего топлива создается высокая температура (до 1 500 градусов по Цельсию), необходимая для выделения из более верхних слоев будущих компонентов топливной смеси - окиси углерода СО и водорода Н2. Далее горячая смесь этих газов поступает в охладитель, который снижает температуру, повышая таким образом удельную калорийность газа. Этот довольно крупный узел обычно приходилось помещать под кузовом машины. Расположенный следом по ходу газа фильтр-очиститель избавляет будущую топливную смесь от примесей и золы. Далее газ направляется в смеситель, где соединяется с воздухом, и окончательно приготовленная смесь направляется в камеру сгорания двигателя автомобиля.


Схема автомобиля ЗИС-21 с газогенератором

Как видите, система производства топлива прямо на борту грузовика или легковушки занимала довольно много места и немало весила. Но игра стоила свеч. Благодаря собственному - и к тому же дармовому - топливу свой автономный транспорт могли себе позволить предприятия, расположенные за сотни и тысячи километров от баз снабжения ГСМ. Это достоинство долго не могло затмить все недостатки газогенераторных автомобилей, а их было немало:

— существенное сокращение пробега на одной заправке;
— снижение грузоподъемности автомобиля на 150-400 кг;
— уменьшение полезного объема кузова;
— хлопотный процесс «дозаправки» газового генератора;
— дополнительный комплекс регламентных сервисных работ;
— запуск генератора занимает от 10-15 минут;
— существенное снижение мощности двигателя.


ЗиС 150УМ, опытная модель с газогенераторной установкой НАМИ 015УМ

В тайге заправок нет

Древесина всегда являлась основным топливом для газогенераторных автомобилей. В первую очередь, конечно, там, где дров в избытке, - на лесозаготовках, в мебельном и строительном производстве. Традиционные технологии лесопереработки при промышленном использовании древесины в эпоху расцвета «газгенов» около 30% от массы леса отпускали в отходы. Их и использовали как автомобильное топливо. Интересно, что правилами эксплуатации отечественных «газгенов» строжайше запрещалось использование деловой древесины, так как и отходов лесной промышленности было с избытком. Для газогенераторов годились как мягкие, так и твердые породы дерева.

Единственное требование - отсутствие на чурках гнили. Как показали многочисленные исследования, проведенные в 30-е годы в Научном автотракторном институте СССР, лучше всего в качестве топлива подходят дуб, бук, ясень и береза. Чурки, которыми заправлялись котлы газогенераторов, чаще всего имели прямоугольную форму со стороной 5-6 сантиметров. Сельскохозяйственные отходы (солома, лузга, опилки, кора, шишки и пр.) прессовали в специальные брикеты и также «заправляли» ими газогенераторы.

Главным недостатком «газгенов», как мы уже говорили, можно считать малый пробег на одной заправке. Так, одной загрузки древесными чурками советским грузовикам (см. ниже) хватало не более чем на 80-85 км пробега. Учитывая, что «заправляться» руководство по эксплуатации рекомендует при опустошении бака на 50-60%, то и вовсе пробег между заправками сокращается до 40-50 км. Во-вторых, сама установка, вырабатывающая генераторный газ, весит несколько сотен килограммов. К тому же двигатели, работающие на таком газе, выдают на 30-35% меньше мощности, чем их бензиновые аналоги.

Доработка автомобилей под дрова

Для работы на генератором газе автомобили приходилось приспосабливать, но изменения не были серьезными и порой были доступны даже вне заводских условий. Во-первых, в моторах повышали степень сжатия, чтобы не так существенна была потеря мощности. В некоторых случаях для улучшения наполнения цилиндров двигателя применялся даже турбонаддув. На многие «газифицированные» авто устанавливался генератор электрооборудования с повышенной отдачей, поскольку для вдувания воздуха в топку использовался достаточно мощный электровентилятор.


ЗИС-13

Для сохранения тяговых характеристик, в особенности это касалось грузовиков, при снизившейся мощности двигателя передаточные числа трансмиссии делали более высокими. Скорость движения падала, но для автомобилей, использующихся в лесной глуши и прочих пустынных и отдаленных районах это не имело решающего значения. Чтобы компенсировать изменившуюся из-за тяжелого газогенератора развесовку, в некоторых машинах усиливали подвеску.

Помимо того, из-за громоздкости «газового» оборудования отчасти приходилось перекомпоновывать автомобиль: менять, сдвигать грузовую платформу или урезать кабину грузовика, отказываться от багажника, переносить выхлопную систему.

Золотая эра «газгена» в СССР и за границей

Эра расцвета газогенераторных автомобилей пришлась на 30-40-е года прошлого века. Одновременно в нескольких странах с большими потребностями в автомобилях и малыми разведанными запасами нефти (СССР, Германия, Швеция) инженеры крупных предприятий и научных институтов взялись за разработку автотранспорта на дровах. Советские специалисты больше преуспели в создании грузовых автомобилей.


ГАЗ-42

С 1935 года и до самого начала Великой Отечественной войны на разных предприятиях Министерства лесной промышленности и ГУЛАГа (Главное Управление ЛАГерей, увы, реалии той поры) «полуторки» ГАЗ-АА и «трехтонки» ЗИС-5, а также автобусы на их базе переделывались для работы на дровах. Также отдельными партиями газогенераторные версии грузовиков производились самими заводами-изготовителями машин. Например, советские автоисторики приводят цифру 33 840 - столько было выпущено газогенераторных «полуторок» ГАЗ-42. Газогенераторных ЗИСов моделей ЗИС-13 и ЗИС-21 в Москве выпущено более 16 тыс. единиц.


ЗИС-21

За довоенное время советскими инженерами было создано более 300 различных вариантов газогенераторных установок, из которых 10 дошли до серийного производства. Во время войны серийными заводами были подготовлены чертежи упрощенных установок, которые могли изготавливаться на местах в автомастерских без применения сложного оборудования. По воспоминаниям жителей северных и северо-восточных регионов СССР, грузовики на дровах можно было встретить в глубинке вплоть до 70-х годов ХХ века.

В Германии во время Второй Мировой войны наблюдался острый дефицит бензина. КБ двух компаний (Volkswagen и Mercedes-Benz) получили задание разработать газогенераторные версии своих популярных компактных машин. Обе фирмы в довольно сжатые сроки справились с поставленной задачей. На конвейер встали Volkswagen Beetle и Mercedes-Benz 230. Интересно, что у серийных авто дополнительное оборудование даже не выступало за стандартные габариты «легковушек». В Volkswagen пошли еще дальше и создали опытный образец «дровяного» армейского Volkswagen Тур 82 («кюбельваген»).


Volkswagen Тур 82

Дровяные машины сегодня

К счастью, главное достоинство газогенераторных автомобилей - независимость от сети АЗС, сегодня стало малоактуальным. Однако в свете современных экологических веяний на первый план вышло другое достоинство автомобилей на дровах - работа на возобновляемом топливе без какой-либо его химической подготовки, без дополнительной траты энергии на производство топлива. Как показывают теоретические расчеты и практические испытания, мотор на дровах меньше вредит атмосфере своими выбросами, чем аналогичных двигатель, но уже работающий на бензине или солярке. Содержание выхлопных газов очень схоже с выбросами ДВС, работающих на природном газе.

И тем не менее тема с автомобилями на дровах утратила свою былую популярность. Забыть о газогенераторах не дают в основном инженеры-энтузиасты, которые ради экономии на топливе или в качестве эксперимента переоборудуют свои личные машины для работы на генераторном газе. На постсоветском пространстве есть удачные примеры «газгенов» на базе легковушек АЗЛК-2141 и ГАЗ-24, грузовика ГАЗ-52, микроавтобуса РАФ-2203 и пр. По словам конструкторов, их творения могут проезжать на одной заправке до 120 км со скоростью 80-90 км/ч.


ГАЗ-52

К примеру, переведенный житомирскими инженерами в 2009 году на дрова ГАЗ-52 расходует около 50 кг древесных чурок на 100 км пробега. По словам конструкторов, подкидывать дровишки нужно каждые 75-80 км. Газогенераторная установка традиционно для грузовиков расположилась между кабиной и кузовом. После розжига топки должно пройти около 20 минут, прежде чем ГАЗ-52 сможет начинать движение (в первые минуты работы генератора выработанный им газ не имеет нужных горючих свойств). По расчетам разработчиков, 1 км на дровах обходится в 3-4 раза дешевле, чем на дизельном топливе или бензине.



Газогенераторная установка ГАЗ-52

Единственная на сегодняшний день страна, в которой массово используются автомобили на дровах, - это Северная Корея. В связи с тотальной мировой изоляцией там наблюдается определенный дефицит жидкого топлива. И дрова снова приходят на выручку тем, кто оказался в нелегком положении.

Газогенераторный автомобиль

Во время Второй мировой войны в Европе почти каждое транспортное средство было переоборудовано на использование дров в качестве топлива.
Автомобили, работающие на древесном газу (также еще называемые газогенераторные автомобили ) хоть и теряют свою элегантность во внешнем виде, но очень эффективны, по сравнению со своими бензиновыми собратьями, в плане экологичности и могут равняться с электромобилями.
Рост цен на топливо приводит к возобновлению интереса к этой почти забытой технологии: во всем мире, десятки любителей разъезжают по улицам городов на своих самодельных газогенераторных автомобилях.

Процесс образования газогенераторного газа (синтез газа) , при котором органический материал превращается в горючий газ, начинает происходить под воздействием тепла при температуре 1400 ° C .

Первое использование древесины для образования горючего газа начинается с 1870 года, тогда его использовали для уличного освещения и приготовления пищи.

В 1920-х годах, немецкий инженер Жорж Эмбер разработал генератор, вырабатывающий древесный газ для мобильного использования. Получаемый газ очищался, немного охлаждался, а затем подавался в камеру сгорания двигателя автомобиля, при этом, двигатель практически не нуждался в переделке.

С 1931 года началось массовое производство генераторов Эмбера. В конце 1930-х годов, уже около 9000 транспортных средств использовали газогенераторы исключительно в Европе.

Вторая мировая война

Газогенераторные технологии стали обычным явлением во многих европейских странах во время Второй мировой войны, из-за ограничения и дефицита ископаемых и жидких видов топлива. В одной только Германии, к концу войны, около 500.000 автомобилей были дооборудованы газогенераторами для эксплуатации на древесном газу.


Газогенераторные гражданские автомобили времен Второй мировой войны

Было построено около 3000 «заправочных станций», где водители могли запастись дровами. Не только легковые автомобили, но и грузовые автомобили, автобусы, трактора, мотоциклы, корабли и поезда были оснащены газогенераторными установками. Даже некоторые танки были оборудованы газогенераторными установками, хотя для военных целей немцы производили жидкие синтетические топлива (сделанные из дерева или угля).


500.000 газогенераторных гражданских автомобилей к концу войны в Германии

В 1942 (когда технология еще не достигла пика своей популярности), насчитывалось около 73000 газогенераторных автомобилей в Швеции, во Франции 65000, 10000 в Дании, 9000 в Австрии и Норвегии, и почти 8000 в Швейцарии. В Финляндии числилось 43000 газогенератрных машин в 1944 году, из которых 30000 были автобусы и грузовые автомобили, 7000 легковые автомобили, 4000 тракторов и 600 лодок.

Газогенераторные автомобили также появилась в США и в Азии. В Австралии насчитывалось около 72000 газогенераторных автомобилей. В общей сложности более миллиона автомобилей использующих древесный газ находилось в эксплуатации во время Второй мировой войны.

После войны, когда бензин стал вновь доступен, газогенераторные технологии почти мгновенно канули в лету. В начале 1950-х годов, в Западной Германии осталось только около 20000 газогенераторов.

Программа исследований в Швеции

Рост цен на топливо и глобальное потепление привело к возобновлению интереса к дровам, как к непосредственному топливу. Многие независимые инженеры по всему миру занялись переоборудованием стандартных автомобилей на использование древесного газа в качастве автомобильного топлива. Характерно, что большая часть этих современных газогенераторов разрабатывается в Скандинавии.

В 1957 году правительство Швеции создало исследовательскую программу для подготовки к возможности быстрого перехода автомобилей на использование древесного газа, в случае внезапной нехватки нефти. Швеция не имеет запасов нефти, но у нее есть огромные лесные массивы, которые могут использоваться в качестве топлива. Целью этого исследования была разработка улучшенной, стандартизированной установки, которая может быть адаптирована для использования на всех видах транспортных средств. Это исследование поддерживалось производителем автомобилей Volvo. В результате изучения работы автомобилей и тракторов на протяженности 100.000 км пробега, были получены большие теоретические знания и практический опыт.

Некоторые финские любители инженеры использовали эти данные для дальнейшего развития технологии, например Юха Сипиля (на изображении слева).

Газогенераторная установка вырабатывающая древесный газ, выглядит как большой подогреватель воды. Эту установку можно разместить на прицепе (хотя это затрудняет парковку автомобиля), в багажнике автомобиля (занимает почти все багажное отделение) или на платформе в передней или задней части автомобиля (наиболее популярный вариант в Европе). На американских пикапах, генератор помещается в кузове. Во время Второй мировой войны, некоторые автомобили были оснащены встроенным генератором, полностью скрытым от глаз.

Топливо для газогенератора

Топливо для газогенераторных автомобилей состоит из древесины или щепы (фото слева). Древесный уголь также может быть использован, но это приводит к потере до 50 процентов энергии, содержащейся в оригинальной биомассе. С другой стороны, уголь содержит больше энергии за счет более высокой калорийности, так что спектр топлив может быть разнообразен. В принципе, любой органический материал может быть использован. Во время Второй мировой войны, уголь и торф использовались, но лес был основным видом топлива.


Голландская Volvo 240

Один из наиболее удачных газогенераторных автомобилей был построен в 2008 году голландцем Джоном. Многие автомобили, оборудованные газогенераторами, имели громоздкую конструкцию и не очень привлекательный вид. Голландская Volvo 240, укомплектована современной газогенераторной системой из нержавеющей стали, и имеет современный элегантный вид.

“Получить древесный газ не так уж трудно”, говорит Джон, намного труднее получить чистый древесный газ. У Джона есть много нареканий на автомобильные газогенераторные установки, так как производимый ими газ содержит много примесей.

Джон из Голландии твердо уверен, что газогенераторные установки вырабатывающие древесный газ намного перспективнее использовать стационарно, например, для отопления помещения и для бытовых нужд, для производства электроэнергии, и для подобных производств. Газогенераторный автомобиль Volvo 240 рассчитан прежде всего для демонстрации возможностей газогенераторной технологии.

Возле автомобиля Джона и возле подобных газогенераторных автомобилей всегда собирается много восхищенного и заинтересованного народа. Тем не менее автомобильные газогенераторные установки для идеалистов и на время кризиса - считает Джон.

Технические возможности

Газогенераторная Volvo 240 достигает максимальной скорости 120 километров в час (75 миль / ч) и может поддерживать крейсерскую скорость 110 км / ч (68 миль / ч). “Топливный бак” может содержать 30 кг (66 фунтов) древесины, этого достаточно для примерно 100 километров пробега (62 миль), что сравнимо с электромобилем.

Если заднее сидение загрузить мешками с древесиной, то дальность пробега увеличивается до 400 километров (250 миль). Опять же, это сравнимо с электромобилем, если пространство для пассажира приносится в жертву для установки дополнительных батарей, как в случае с Tesla Roadster или электромобилем Mini Cooper. (В газогенераторе дополнительно ко всему, периодически нужно брать мешок с древесиной из заднего сидения и высыпать в бак).

Прицепной газогенератор

Существует принципиально другой подход к переоборудованию автомобилей газогенераторными системами. Это способ размещения газгена на прицепе. Такой подход избрал Веса Микконен. Последняя его работа - это газогенераторный Lincoln Continental 1979 Mark V, большой тяжелый американский автомобиль класса купе. Lincoln потребляет 50 кг (110 фунтов) древесины на каждые 100 километров пробега(62 миль) и является значительно менее экономным, чем Volvo Джона. Вес Микконен также переоборудовал Toyota Camry, более экономичный автомобиль. Этот автомобиль потребляет всего 20 кг (44 фунтов) древесины при таком же пробеге. Однако прицеп остался почти таким же большим, как и сам автомобиль.

Оптимизация электромобилей может происходить за счет уменьшения размеров и облегчения общего веса. С двоюродными братьями газогенераторными автомобилями такой способ не подходит. Хотя со времен Второй мировой войны газогенераторные автомобили стали намного совершеннее. Автомобили военных времен могли проезжать 20 - 50 километров на одной заправке, имели низкие динамические и скоростные характеристики.


Газогенераторный деревянный автомобиль Джоста Конина

«Передвигаться по миру при помощи пилы и топора», - под таким девизом голландец Джост Конин (Joost Conijn) на своем газогенераторном автомобиле с прицепом, совершил двухмесячное путешествие по Европе, абсолютно не беспокоясь о заправочных станциях (которых он не видел в Румынии).

Хотя прицеп в данном автомобиле использовался для других целей, для хранения дополнительного запаса дров, благодаря чему увеличивалось расстояние между «заправками». Интересно то, что Джост использовал древесину не только в качестве топлива автомобиля, но и как строительный материал для самого автомобиля.

В 1990-х годах водород рассматривали в качестве альтернативного топлива будущего. Затем большие надежды возлагались на биотопливо. Позже большое внимание привлекло развитие электрических технологий в автомобилестроении. Если и эта технология не получит дальнейшего продолжения (тому есть объективные предпосылки), тогда наше внимание вновь сможет переключиться на газогенераторные автомобили.

Несмотря на высокое развитие промышленных технологий, использование древесного газа в автомобилях, представляет интерес с экологической точки зрения, по сравнению с другими альтернативными видами топлива. Газификация древесины несколько более эффективна, по сравнения с обычным сжиганием древесины, так как при обычном сжигании теряется до 25 процентов содержащейся энергии. При использовании газогенератора в автомобиле возрастает потребление энергии в 1,5 раза по сравнению с автомобилем работающем на бензиновом топливе (включая потери на предварительный нагрев системы и увеличение веса самой машины). Если принять к сведению, что необходимая для нужд энергия транспортируется, а затем вырабатывается из нефти то и газификация древесины остается эффективна по сравнению с бензином. Так же следует учитывать, что древесина является возобновляемым источником энергии, а бензин нет.

Преимущества газогенераторных автомобилей

Самое главное преимущество газогенераторных автомобилей заключается в том, что в нем используется возобновляемое топливо без какой-либо предварительной обработки. А на преобразование биомассы в жидкое топливо, такое как этанол или биодизель, может расходоваться энергии (в том числе и СО2) больше, чем содержится в изначальном сырье. В газогенераторном автомобиле для производства топлива энергия не используется, за исключением порезки и рубки древесины.

Газогенераторный автомобиль не нуждается в мощных химических аккумуляторных батареях и это является преимуществом перед электромобилем. Химические аккумуляторы имеют свойство саморазряжаться и нужно не забывать их заряжать перед эксплуатацией. Устройства, вырабатывающие древесный газ являются, как бы, натуральными аккумуляторами. Отсутствует необходимость в высокотехнологичной обработке отработавших и неисправных химических аккумуляторных батарей. Отходами работы газогенераторной установки является зола, которая может быть использована в качестве удобрения.

Правильно сконструированный автомобильный газогенератор значительно меньше засоряет воздушное пространство, чем бензиновый или дизельный автомобиль.

Газификация древесины значительно чище, чем непосредственное сжигание древесины: выбросы в атмосферу сопоставимы с выбросами при сжигании природного газа. При эксплуатации электромобиль не засоряет атмосферу, но позже, для зарядки аккумуляторов нужно приложить энергию, которая, пока что добывается традиционным путем.

Недостатки газогенераторных автомобилей

Несмотря на многие преимущества в эксплуатации газогенераторных автомобилей, следует понимать, что это не самое оптимальное решение. Установка, производящая газ, занимает много места и весит несколько сотен килограммов - и весь этот «завод» приходится возить с собой и на себе. Газовое оборудование имеет большой размер из-за того, что древесный газ имеет низкую удельную энергию. Энергетическая ценность древесного газа составляет около 5,7 МДж / кг, по сравнению с 44 МДж / кг у бензина и 56 МДж / кг у природного газа.

При работе на газогенераторном газе не удается достигнуть скорости и ускорения, как на бензине. Так происходит потому, что древесный газ состоит примерно из 50 процентов азота, 20 процентов окиси углерода, 18 процентов водорода, 8 процентов двуокиси углерода и 4 процента метана. Азот не поддерживает горение, а углеродные соединения снижают горение газа. Из-за высокого содержания азота двигатель получает меньше топлива, что приводит к снижению мощности на 30-50 процентов. Из-за медленного горения газа практически не используются высокие обороты, и снижаются динамические характеристики автомобиля.

Опель Кадет, оснащенный газогенераторной установкой

Автомобили с небольшим объемом двигателя тоже можно оборудовать генераторами древесного газа (например, Opel Kadett на рисунке выше), но все же лучше оснащать газогенераторами большие автомобили с мощными двигателями. На маломощных двигателях, в некоторых ситуациях, наблюдается сильная нехватка мощности и динамики двигателя.

Сама газогенераторная установка может быть изготовлена и меньшего размера для небольшого автомобиля, но это уменьшение не будет пропорциональным размеру автомобиля. Были сконструированы газогенераторы и для мотоциклов, но их габаритные размеры сопоставимы с мотоциклетной коляской. Хотя этот размер значительно меньше, чем устройства для автобуса, грузовика, поезда или корабля.

Удобство использования газогенераторного автомобиля

Еще одна известная проблема газогенераторных автомобилей заключается в том, что они не очень удобны в использовании (хотя и значительно улучшились по сравнению с технологиями, используемыми во время войны). Тем не менее, несмотря на улучшения, современному газогенератору требуется около 10 минут, чтобы выйти на рабочую температуру, поэтому не получится сесть в автомобиль и немедленно уехать.

Кроме того, перед каждой последующей заправкой необходимо извлечь лопаткой золу - отработку предыдущего горения. Образование смол уже не так проблематично, чем это было 70 лет назад, но и сейчас это очень ответственный момент, так как фильтры должны очищаться регулярно и качественно, что требует дополнительного частого обслуживания. В общем, газогенераторный автомобиль требует дополнительных хлопот, полностью отсутствующих в работе бензинового автомобиля.

Высокая концентрация смертельного угарного газа требует дополнительных мер предосторожности и контроля от возможной протечки в трубопроводе. Если установка находится в багажнике, то не следует экономить на датчике СО в салоне автомобиля. Нельзя запускать газогенераторную систему в помещении (гараже), так как при запуске и выходе на рабочий режим должно быть открытое пламя (рисунок слева).

Массовое производство газогенераторных автомобилей


Газогенераторный Volkswagen Beetle, выпускаемый на заводе

Все транспортные средств, описанные выше, построены инженерами любителями. Можно предположить, если бы было решено выпускать газогенераторные автомобили профессионально в заводских условиях, то, скорее всего, многие недостатки были бы устранены, а преимуществ стало бы больше. Такие автомобили могли бы выглядеть более привлекательно.

Например, в автомобилях Volkswagen, выпускаемых в заводских условиях во время Второй мировой войны, весь газогенераторный механизм был скрыт под капотом. С передней стороны в капоте находился только люк для загрузки дров. Все остальные части установки не были видны.

Еще один вариант газогенераторного автомобиля выпускаемого в заводских условиях - Mercedes-Benz. Как видно на фотографии ниже, весь механизм газогенератора скрыт под капотом багажника.

Вырубка леса

К сожалению, увеличение использования древесного газа и биотоплива может привести к образованию новой проблемы. И массовое производство газогенераторных автомобилей может усугубить эту проблему. Если начать значительно увеличивать количество автомобилей, использующих древесный газ или биотопливо, то в таком же количестве начнут снижаться запасы деревьев, а сельскохозяйственные земли будут принесены в жертву для выращивания культур, перерабатываемых на биотопливо, а это может привести к образованию голода. Использование газогенераторной техники во Франции во время Второй мировой войны стало причиной резкого уменьшения лесных запасов. Так же и другие технологии производства биотоплива приводят к уменьшению выращивания полезных для человека растений.

Хотя, наличие газогенераторного автомобиля может привести к более умеренному его использованию:
прогревать в течении 10 минут газогенератор или использовать велосипед для перемещения в магазин за продуктами - скорее всего выбор будет сделан в пользу последнего;
рубить в течении 3-х часов дрова для поездки на пляж или воспользоваться поездом - вероятно выбор будет в пользу последнего.


На запуск и разогрев газогенератора нужно потратить минимум 10 минут времени

Как бы там ни было, газогенераторные автомобили не могут равняться с бензиновыми и дизельными автомобилями. Только глобальная нехватка нефти или очень большое удорожание ее сможет заставить нас пересесть на газогенераторный автомобиль.

По материалам: sintezgaz.org.ua

газогенератор,газогенератор своими руками,Газогенератора,газогенераторы бытовые,генератор, газогенераторный автомобиль

Количество и состав газа зависят, главным образом, от темпера­туры и скорости перегонки. При нормальных условиях газ состоит кз угольной кислоты, окиси углерода и незначительного количества ме­тана, ненасыщенных алифатических углеводородов и водорода. На стр. 51 были указаны выхода этих составных частей древесного газа, по­лученных Klason" OM при сухой перегонке сосны, ели, березы ибука, высчитанные в % отношении к весу сухого дерева. Средний процент­ный состав газа из вышеназванных пород но объему будет такой:

СОз. . . ... . -57,1*

СО....................... - 32,7 «

С4Н4 ■ ... . . -

Bergstrom и Weslen дают следующие цифры состава газа, полученного при сухой перегонке воздушно-сухого хвойного дерева в шведских печах с внутренним нагревом*.

COj...................... 50-56Н

СО................. 28-«он

Сн«................. 18 Н

Тяжелых углеводородов 2-3 Ч Я...... . 0,5-14

Выход этого газа составляет около 18% веса сухого дерева. Содержание в нем метана в размере 18% кажется слишком высоким, так VaK оно соответствует почти всему количеству метоксильных групп в дереве, между тем как другие продукты сухой перегонки также содержат значительное количество метоксила.

По исследованиям F. Fischer"a газы, образующиеся при сухой перегонке дерева в железных ретортах, имеют следующий средний состав по объему, выведенный на основании большого числа ана­лизов:

TOC o "1-3" h z С02 ............................. 59,0*

СО....... . 33,он

СН< ....... . 3,5*

Водорода......................... 3,0*

Состав древесного газа вообще не является постоянным во все время выделения его из перегонного аппарата и меняется в зависи­мости от стадии развития. Вначале из аппарата выделяется только воздух, заключающийся в дереве и аппарате, затем появляется газ, состоящий почти исключительно из СОг и СО и мало горючий. Лишь после того как из дерева улетучилась вся вода, начинается сильное развитие газов с значительным содержанием углеводородов и водо­рода, которые легко горят. В следующей стадии процесса выделение газов уменьшается, но горючесть их не слабеет.

Хотя небольшое количество воздуха в начале сухой перегонки дерева представляет совершенно нормальную часть газа, но в неко­торых случаях, например в таких установках, которые работают при отсасывании древесного газа вентилятором, эта примесь воздуха может значительно увеличиться. Klar приводит пример, когда количество кислорода в газе доходило до 6%. Мне лично приходилось наблюдать в углевыжигательной печи системы А и и н о в а содержание кислорода 2-5 и даже 4°/о, которое часто сопровождалось хлопками, особенно при переводе газов из одного регенератора на другой.

Кроме воздуха, газы, выходящие из холодильника, содержат ещ^ некоторое количество древесного уксуса и смолы, которыми газы насыщаются более или менее, смотря по температуре охлаждающей воды и по давлению, господствующему в холодильных трубах. Чем больше газов образуетсй при сухой перегонке дерева н чем теплее они выходят из холодильника, тем больше потеря уксусной кислоты и особенно древесного спирта, происходящая от насыщения газов составными частями древесного уксуса. Поэтому, во избежание этой потери, нужно, чтобы, во 1-х, количество образующихся газов было минимальным, а это достигается понижением температуры перегонки, во 2-х, чтобы температура газов при выходе их из холодильника не под­нималась выше 20® Ц и в 3-х, доступ воздуха в перегонный аппарат бил Понижен до минимума, таккак вследствие притока воздуха количество газов увеличивается, и происходит вследствие окисления потеря про­дуктов, особенно метилового спирта,

С увеличением количества углеводородов в газах увеличивается их теплотворная способность. Мы уже видели в таблице Юона, что газ в первоначальной стадии своего развития дает только 1100 кал, На 1 куб. м, в конце же перегонки калорийность его достигает 4780 кал. на куб, м.

Если мы возьмем древесный газ указанного F. Fischer"oM со­става, то его теплотворная способность равняется 1312,8 кал., Т.-е. 1 куб, м газа при 1б°Ц и прн атмосферном давлении выделяет при сгорании указанное количество тепла; вес 1 куб, м такого газа ровен 1,479 кг. Полезная калорийность газа в практике значительно понижается, вследствие неизбежной потери тепла, и по расчету рав­няется 864 хал. Практически можно принять, что 100 кг дерева даю* при сухой перегонке максимум 20 - 26 кг газа, т.-е. около 15 куб. м , которые яри полезной теплотворной способности 864 «пи. дадут всего 12 960 кал, Сравнивая ценность этого газа с тео­ретической теплотворной способностью хорошего каменного угля в 7000 «ал. и с практической в 5000 кал, получаем, что данный газ по своей топливной способности может заменить 2,5 кг каменного

5000 I. При подогревании же древесного газа отходящими в ды­мовую трубу топочными газами его топливная ценность может под­няться до калорийности 3,3 кг каменного угля.

Благодаря значительной теплотворной способности древесног* газа на заводах сухой перегонки дерева его не выпускают бесполезна на воздух, а сжигают под ретортами, что дает экономию на каменном угле около 10%, или же его употребляют, как топливо для газовых двигателей, при чем *аз or 100 кг дерева, равноценный 3 хг каменног» угля, развивает энергию, равную 3,75 лошадиных сил в час.

За тысячи лет истории человечество научилось добывать нефть и газ, изобрело электричество, использует энергию ветра и солнца, но по прежнему сжигает в топках древесину. Дрова, опилки, старое дерево, отходы деятельности древообрабатывающих предприятий – все это можно использовать, если сделать дровяной газогенератор своими руками.

Немало мастеров успешно используют это устройство для дома и даже для автомобиля. Если вы заинтересовались этой темой, или появилась идея самостоятельно сделать генератор, мы расскажем как это реализовать на практике.

В нашем материале речь пойдет о принципе действия дровяного газогенератора, достоинствах и недостатках такой системы, а также о том, как самостоятельно собрать такое устройство.

Быстрое сжигание дров на открытом воздухе дает, главным образом, некоторое количество полезного тепла. Но совсем иначе древесина ведет себя при так называемом , т.е. при горении в присутствии очень малого количества кислорода.

В такой ситуации наблюдается не столько горение, сколько тление древесины. А полезным продуктом этого процесса является не тепло, а горючий газ.

Газогенераторы некогда активно использовались в качестве поставщика топлива для авто. И сейчас можно изредка встретить машины, работающие на вырабатываемом ими газе:

Галерея изображений

При медленном горении древесины на выходе получается смесь, содержащая следующие продукты:

  • метан (СН 4);
  • водород (Н 2);
  • оксид углерода (он же СО или угарный газ);
  • различные предельные углеводы;
  • углекислый газ (СО 2);
  • кислород (О 2);
  • азот (N);
  • водяной пар.

Только часть этих ингредиентов является горючими газами, все остальное – это загрязнения или негорючий балласт, от которого лучше избавиться. Поэтому нужно не просто сжечь дерево в специальной установке, но и очистить результат, а также охладить полученную газовую смесь.

В условиях промышленного производства этот процесс включает следующие этапы:

  1. Сжигание твердого топлива в присутствии малого (около 35% от нормы) количества кислорода.
  2. Первичная грубая очистка , т.е. отделение летучих частиц в циклонном вихревом фильтре.
  3. Вторичная грубая очистка , при которой газ очищается с помощью водяного фильтра, используется так называемый скруббер-очиститель.

Самодельные устройства для использования в домашних условиях выглядят проще и места занимают меньше, но принцип их работы, а также конструкция очень похожи. Перед началом изготовления такого устройства необходимо все хорошо продумать, а также составить или найти проект агрегата.

Для поставки в бензиновый двигатель газообразного горючего его следует охладить, очистить и смешать с воздухом в подходящих пропорциях. Для этого агрегат требуется оборудовать вентилятором для розжига, циклоном, фильтром, смесителем и охладителем.

Галерея изображений

Шаг 8: Самодельный газогенератор в "полный рост"

Осталось дополнить самодельный генератор газа устройствами, обеспечивающими нормальную работу, и решить вопросы с установкой его на мотоцикл с коляской.

Галерея изображений

Конечно, чем ближе размеры и конфигурация самодельного газогенератора к промышленной модели, тем более эффективно будет работать устройство. Сделать в домашних условиях точную копию газогенератора, изготовленного на заводе, затруднительно, да и не обязательно.

Проще скопировать готовый самодельный агрегат, попросив его у знакомых, друзей, а то и просто воспользовавшись информацией в интернете.

Сначала изготавливают основные узлы газогенератора, затем их собирают в одно целое устройство. Чтобы сделать такое устройство, необходимо подготовить следующие элементы:

  1. Корпус.
  2. Бункер для топлива.
  3. Камеру сгорания.
  4. Горловину камеры сгорания.
  5. Воздухораспределительный узел.
  6. Фильтровочный узел.
  7. Патрубок камеры сгорания.
  8. Колосниковую решетку, дверцы и другие подобные элементы.

Корпус, который иногда называют камерой заполнения, может иметь как цилиндрическую, так и кубическую форму. Поэтому у мастера есть два варианта для его изготовления: использовать подходящую металлическую емкость, слегка ее модифицировав, или сделать корпус “с нуля” из уголка и листового металла.

Для изготовления самодельного газогенератора можно использовать подручные материалы, например, металлическую бочку, старые газовые баллоны, корпус огнетушителя и т.п.

Подобным же образом делается бункер для твердого топлива, т.е тоже из металлического листа и уголка. Позднее бункер закрепляют внутри корпуса, поэтому его размеры должны быть соответствующими. Впрочем, иногда проще превратить в бункер часть корпуса газогенератора. Для этого часть пространства отделяют с помощью металлических плит.

Подходящий для внутренностей газогенератора на дровах материал – сталь с низким содержанием углерода. Корпус следует накрыть плотно прилегающей крышкой. Герметизация – важное условие правильной работы генератора, поскольку именно таким путем обеспечивается поступление ограниченного количества кислорода.

Самодельный газогенератор – это достаточно тяжелое устройство, следует позаботиться о его устойчивости. Для этого к нижней части корпуса приваривают прочные ножки. Отдельного внимания заслуживает крышка, через которую осуществляют загрузку топлива.

Порой она бывает тяжелой и поднять ее самостоятельно не просто. Чтобы решить проблему, можно использовать специальную амортизационную рессору.

Для камеры сгорания понадобится особая жаропрочная сталь, поскольку именно здесь происходит горение топлива при очень высоких температурах. Впрочем, для этих целей можно успешно использовать пустой баллон от бытового газа. Подойдет и новая емкость, и бывшая в употреблении.

Если газовый баллон для изготовления бытового газогенератора ранее был в употреблении, перед началом сварочных работ его лучше заполнить водой. Это предотвратит возможное возгорание остатков газа

Металлическую горловину камеры сгорания, в которой осуществляется еще один важный процесс – крекинг смол – следует отделить от остальных элементов специальными жаростойкими прокладками. Вполне подходящим для этого материалом считается асбест, но лучше использовать более современные и безопасные материалы.

Воздухораспределительный узел соединяют с конструкцией с помощью штулцера, рядом с которым устанавливают обратный клапан. Задача этого элемента – регулировать поступление воздуха к топливу и не допускать утечку полученного горючего газа, ради которого и затевалось создание генератора.

Между воздухораспределительной коробкой и средней частью камеры сгорания должны находиться специальные калибровочные отверстия-фурмы. После камеры сгорания ставят систему фильтров, чтобы очистить полученную газовую смесь от загрязнений. Колосниковая решетка предназначена для очистки камеры сгорания.

Ее обычно выполняют из чугуна. Чтобы облегчить процесс очистки, среднюю часть колосника можно сделать подвижной или съемной. Дверцы обеспечивают доступ в различные отделы газогенератора и служат для загрузки дров, очистки камеры сгорания и т.п. Конечно, все такие дверцы должны быть герметичными и уплотненными с помощью термостойких прокладок.

Внизу монтируется патрубок, по которому полученная газовая смесь поступает в фильтровочный узел, а затем в охладитель. Для изготовления небольшого циклонного фильтра можно использовать корпус старого огнетушителя или другую металлическую емкость подходящего размера и конфигурации.


На этой схеме наглядно продемонстрировано устройство и принцип работы циклонного очистительного фильтра. С его помощью можно выполнить первичную очистку газа, полученного в результате работы газогенератора

Работает он таким образом: в верхнюю часть циклона нагнетается загрязненный горячий газ. Затем в круглом корпусе он начинает вращаться. Под действием центробежных сил частички загрязнений перемещаются в нижнюю часть устройства и покидают его через отверстие для выгрузки. Очищенный газ выходит через еще одно отверстие в верхней части фильтра.

В домашних условиях в качестве охладителя можно использовать обычный радиатор или изготовить специальный змеевик. Горячий газ движется по такой длинной конструкции и постепенно остывает. При желании можно организовать водяное охлаждение.

Считается, что бытовой газогенератор способен “переварить” древесину любой влажности, даже 50%, что характерно для свежесрубленного дерева. На практике получается, что чем выше влажность топлива, тем ниже эффективность работы газогенератора. Не рекомендуется загружать в устройство топливо, влажность которого превышает 20%.

Исправить ситуацию позволит небольшая модификация устройства. От патрубка камеры сгорания следует провести кольцевой газопровод, поместив его в пространстве между стенками корпуса и наружной стороной камеры загрузки. В результате часть тепловой энергии будет передана топливу, что позволит снизить его влажность. Кроме того, на охлаждение понадобится меньше времени, и КПД генератора возрастет.

Ценная информация по газогенераторам

Иногда ожидания владельцев частных домов, задумавшихся о приобретении или самостоятельном изготовлении газогенератора, оказываются слишком радужными по сравнению с реальной ситуацией.

Бытует мнение, что КПД газогенератора, составляющее около 95%, значительно превышает КПД обычного , который достигает 60-70%. Эти цифры в целом верны, но сравнивать их некорректно.

В изготовлении самодельного газогенератора используются отслужившие газовые баллоны, бидоны, кухонная утварь и т.д. Практически бесплатное устройство экономно расходует не самое дорогое топливо при довольно высокой производительности

Первый показатель отражает эффективность производства горючего газа, а второй – количество тепла, полученного при работе котла. В обоих случаях сгорает древесина, но результат этого процесса качественно различается. Если в дальнейшем полученный путем пиролизного сгорания древесины горючий газ будет использован для обогрева жилища, такое сравнение можно будет провести.

Стоит помнить также, что самодельные газогенераторы, хотя они и могут работать с высокой отдачей, редко бывают столь же эффективными, как и промышленные модели. Этот момент следует учесть еще на этапе проектирования агрегата и расчетов стоимости проекта и его ожидаемой эффективности.

Если необходимость создания газогенератора обусловлена только желанием улучшить систему отопления дома, стоит обратить внимание на похожее устройство – , который работает на очень схожих принципах. Главное его отличие от газогенератора состоит в том, что полученный газ немедленно сжигается, а полученная энергия используется для подогрева теплоносителя в системе отопления дома.

В таком устройстве монтируют дополнительную камеру сгорания, в которую необходимо организовать отдельную подачу воздуха. Если же нужно обогревать дом с помощью газогенератора, понадобится еще для отопления. Это увеличит расходы на модернизацию или обустройство отопления. Необходимо просчитать, стоит ли в таком случае овчинка выделки?

Важный момент – правильное обслуживание газогенератора в процессе его эксплуатации. Реклама утверждает, что это универсальное устройство, в котором сгорает все: от опилок до свежесрубленного дерева. Но реклама умалчивает о том факте, что при загрузке влажного сырья количество полученного горючего газа может сократиться на 25% или больше.

Лучшее топливо для бытового газогенератора – древесный уголь. При его сжигании не тратится слишком много энергии на испарение избыточной влаги, что позволяет получить максимальное количество горючего газа

Оптимальным топливом для газогенератора, по мнению специалистов, является древесный уголь. При его сгорании на испарение влаги уходит минимальное количество энергии, что позволяет ускорить процессы пиролиза.

Владельцы автотранспорта могут рассчитывать на газогенератор не только для обогрева, но и для работы своего транспортного средства. действительно, в Европе немало автомобилистов вполне успешно приспособили свой транспорт для работы на дровах. Но чаще всего это компактные и прочные устройства, изготовленные из тонкой и прочной нержавеющей стали.

Стоимость таких агрегатов, даже изготовленных самостоятельно, совсем не маленькая. В российских реалиях газогенераторы для автомобилей изготавливают из подручных средств и устанавливают на грузовой автотранспорт.

Эффект от их работы невысок, обычно наличию такого агрегата сопутствуют такие явления как длительный розжиг, необходимость постоянной работы двигателя на высоких или средних оборотах, что способствует его скорому износу.

Для автомобиля лучше всего использовать качественный газогенератор, выполненный из прочной нержавеющей стали, имеющий относительно небольшой вес и компактные размеры

Интересный вариант использования газогенератора в частных домовладениях – использование горючего газа для домашней электростанции. Реализуют такой проект с помощью дизельного двигателя внутреннего сгорания.

Выводы и полезное видео по теме

На этом видео продемонстрирован процесс работы самодельного газогенератора:

Здесь представлен интересный опыт по созданию самодельного газогенератора с учетом сделанных ошибок:

Это вариант компактного газогенератора, предназначенного для установки на транспортное средство:

Изготовить своими руками жизнеспособный газогенератор не так уж и просто. Чаще всего такие агрегаты делают для автомобилей, но и в домах они вполне эффективны. Умелому мастеру, который не боится сложностей и готов к экспериментам, эта задача вполне по силам.

Если в ходе ознакомления с информацией у вас появились вопросы или есть рекомендации по собственноручной сборке дровяного газогенератора, пожалуйста, оставляйте свои комментарии ниже.

Природный газ – это самый дешевый источник энергии для системы отопления. Но в наши дни газ стоит не так уж и дешево. Поэтому многие домовладельцы предпочитают использовать в системах отопления альтернативные газогенераторы, работающие на дровах или опилках.

И в данной статье мы рассмотрим процесс создания такого газогенератора. Изучив этот материал, вы сможете собрать дровяной газогенератор своими руками и воспользоваться всеми преимуществами альтернативного способа отопления.

Горючий газ можно добыть не только из скважины. Например, если нагреть дрова до 1100 градусов Цельсия, ограничивая доступ кислорода в зону окисления топлива, то процесс горения перейдет в стадию термического разложения – пиролиза. Итогом пиролиза будет преобразование целлюлозы в низкомолекулярные олефины – горючие газы этилен и пропилен.

Причем КПД «пиролизного» котла в 1,5-2 раза выше, чем у обычного твердотопливного «нагревателя» . Ведь выделяемые в процессе пиролиза низкомолекулярные олефины выделяют в процессе горения намного больше энергии, чем сгорающая целлюлоза.

В итоге, генератор на опилках, дровах, жмыхе или любом другом источнике целлюлозы функционирует по следующей схеме:


  • В первичной камере сгорания, в результате классического пиролиза, целлюлоза переходит в низкомолекулярные олефины.
  • На следующем этапе полученные в результате пиролиза олефины проходят сквозь ряд фильтров, очищающих горючие газы от примесей – уксусной и муравьиной кислоты, сажи, золы и так далее.
  • После фильтрации газы нужно охладить, поскольку разогретое топливо отдает меньше энергии на финальной стадии окисления.
  • Далее охлажденные газы переходят во вторичную камеру сгорания, где происходит окончательное окисление (горение) сопровождаемое выделением энергии, поглощаемой стенками (корпусом) котла. Причем во вторичную камеру сгорания газов закачивается отдельная порция воздуха, поскольку первичная камера функционирует в условиях ограниченного поступления кислорода.

Разогретые стенки котла можно соединить с водяной «рубашкой», превратив газогенератор в обычный водонагревательный котел, или использовать в качестве нагревательного элемента воздушного конвектора.

Почему это выгодно?

Построив древесный газогенератор своими руками, вы сможете рассчитывать на следующие выгоды:

  • Уменьшенный расход топлива. Ведь КПД котла с газогенератором равно 90-95 процентам, а у твердотопливного котла – всего 50-60 процентов. То есть, на обогрев одного и того же помещения газогенератор потратит не более 60 процентов топлива, расходуемого обычным твердотопливным котлом.
  • Продолжительный процесс горения. Пиролиз дров происходит за 20-25 часов, а процесс термического разложения древесного угля заканчивается за 5-8 суток. Следовательно, загрузку дров в котел можно проводить всего раз в сутки . А если вы пользуетесь древесным углем, то «зарядка» котла осуществляется раз в неделю!
  • Возможность использовать в качестве топлива любой источник целлюлозы – от жмыха и соломы, до живой древесины с влажностью около 50 процентов. То есть о «сухости» дров можно уже не заботиться. Причем в топку некоторых моделей газогенераторных котлов можно отгружать даже метровые поленья, без предварительного измельчения (колки).
  • Отсутствие потребности в чистке и дымохода, и поддувала. Пиролиз утилизирует топливо практически без остатка, а продукт окисления олефинов – это обычный водяной пар.

Кроме того, необходимо отметить и возможность полностью автоматизировать процесс работы котла.

Разумеется, полностью автоматический газогенератор своими руками вам не создать, но промышленные модели могут работать неделями, потребляя топливо из бункера и управляя процессом разогрева теплоносителя без участия оператора.

К отрицательной стороне практики использования газогенераторов на дровах относятся следующие факты:

  • Такой котел стоит очень дорого. Цена самого дешевого варианта «пиролизного» котла в два раза выше стоимости твердотопливного аналога. Поэтому самые рачительные хозяева предпочитают строить газогенератор на дровах своими руками.
  • Такой котел работает на электричестве, расходуемом на энергообеспечение систем надува воздуха в камеры сгорания. То есть, если нет электричества – нет и тепла. А обычная печь будет «работать» где угодно.
  • Котел генерирует стабильно высокую мощность. Причем снижение интенсивности нагрева спровоцирует сбой в работе всей системы – вместо горючих олефинов во вторичную камеру пойдет обычный деготь.

Но все недостатки «окупаются» обилием положительных характеристик и экономичной работой нагревательного прибора. Поэтому приобретение газогенератора, а тем более самостоятельное строительство такого «отопительного прибора» – это очень выгодное дело. И ниже по тексту мы опишем процесс создания дровяного газогенератора.

Как сделать газогенератор своими руками?

Перед сборкой газогенератора и трансформацией данного прибора в отопительный котел нам нужно заготовить узлы и детали, из которых и будет собираться этот агрегат.

Причем классическое устройство газогенератора на дровах предполагает использование в процессе сборки следующих комплектующих:

  • Во-первых, корпуса – основы будущего агрегата, во внутренней части этого узла будут установлены все составные элементы котла. Корпус собирается из уголков и листовой стали, предварительно раскроенных и нарезанных по шаблонам и чертежам.
  • Во-вторых, бункера – емкости для хранения топлива (дров, древесного угля, паллет и так далее). Бункер собирается из листового проката и крепится в корпусе. Причем под этот узел можно выделить часть внутреннего пространства корпуса, разграничив ее с помощью металлических плит из низкоуглеродистой стали.
  • В-третьих, камеры сгорания – ее размещают в нижней части бункера. Ведь основная задача этого узла – это генерирование высокой температуры, поэтому камеру изготавливают из жаропрочной стали. А крышку бункера – герметизируют, препятствуя несанкционированному насыщению камеры сгорания кислородом.
  • В-четвертых, горловины камеры сгорания – особого участка, где реализуется крекинг смол. Эту деталь камеры отделяют от корпуса с помощью асбестовых прокладок.
  • В-пятых, коробки воздухораспределителя – особого узла, размещаемого вне корпуса. Причем врезка штуцера воздухораспределителя в корпус осуществляется посредством обратного клапана. Этот узел обеспечивает приток кислорода в камеру сгорания олефинов, препятствуя выходу горючих газов из камеры сгорания.
  • В-шестых, комплекта фильтров и патрубка, соединяющего горловину камеры сгорания дров с камерой сгорания олефинов.

Кроме того, нам понадобится колосниковая решетка – она нужна для отделения углей в камере сгорания, лучки и дверцы – они обеспечивают доступ в полости корпуса, в том числе и в бункер или камеру сгорания.

Подготовив все указанные элементы, мы можем приступать к сборке газового генератора, осуществляемой по следующему плану:

  • Вначале собирают корпус.
  • Затем в корпусе обустраивают бункер с камерой сгорания, дополняя конструкцию колосниками и приточным каналом (поддувалом).
  • Горловину камеры сгорания дров соединяют патрубком с камерой горения олефинов. Причем в патрубок можно вывести на систему охлаждения газов, монтируемую за пределами корпуса.
  • В верхней части корпуса собирают коробку воздухораспределителя, предварительно подготовив ввод в камеру сгорания олефинов с помощью обратного клапана.
  • Далее на петли монтируют дверцу в бункер и лючки в камеры сгорания (и дров и олефинов).

Собранный таким образом котел оборудуют воздушными компрессорами (воздухораспределитель и приточный канал в камеру сгорания дров) и вытяжной трубой (дымоходом). Ну а в самом конце на корпус котла, желательно в зоне вторичной камеры сгорания, монтируют водяную рубашку с приточным и выпускным штуцером, в которой будет циркулировать теплоноситель. Причем рубашку можно разместить в двойных стенках корпуса или камеры сгорания олефинов.

 
Статьи по теме:
Как на нас влияют фазы луны
Вам приходилось замечать, что в некоторые дни месяца вы поднимаетесь утром бодрыми, полными сил и готовыми сворачивать горы, а в другие – весь день чувствуете себя вялыми и уставшими с самого утра, несмотря на полноценный сон? Если в это время у вас закра
Семинар - это современная форма общения с аудиторией
Александр Капцов Время на чтение: 11 минутА А Как существенно заработать без серьезных вложений, знают опытные организаторы тренингов либо семинаров. Правильный организационный подход и умелое проведение мероприятий приносят хорошую финансовую выгоду. Ка
Развитие эмоционально-волевой сферы у детей дошкольного возраста
Эмоционально-волевая сфера дошкольника формируется в достаточно короткий промежуток времени. Пройдет всего 6-7 лет и в ребенке созреет самостоятельная, активная личность, внутри образуется стержень психики, который в дальнейшем становится основой характер
Правила дорожного движения для детей дошкольников Правила пдд для детей краткое содержание
С каждым днём всё увеличиваются и увеличиваются потоки транспортных средств на улицах. В такой ситуации родителям важно научить детей правилам дорожного движения (ПДД), потому что ничего не может быть важнее здоровья и жизни ребёнка, его безопасности. Как